
Review of Applied Artificial Intelligence
Principles in JavaScript Engines

Saint Wesonga

September 29, 2010

Abstract

This article is a review of some Artificial Intelligence concepts and
issues in a real world scenario - JavaScript engine optimization. In
particular, the focus is on how to best integrate two JavaScript en-
gines, each with its own performance properties, for the best overall
performance. I came across this in the Mozilla ticketing system1 in
my endeavors as a part time Mozilla contributor.

1 A Brief History of the Mozilla JavaScript

Engines

SpiderMonkey[1], owned and maintained by Mozilla, was the first JavaScript
engine ever written. It was written by Brendan Eich, now the CTO of Mozilla
Corporation[2]. It’s modular design allows it to be embedded in applications
such as the Firefox browser and Adobe’s Acrobat software. This engine is
strictly a JavaScript interpreter.

In the quest for performance, an upgrade to SpiderMonkey called Trace-
Monkey debutted in 2009 in Firefox 3.5. It included a trace based compiler[3]
which works by dynamically discovering loop headers and then recording and
compiling all paths through a loop that are executed with sufficient frequency.
TraceMonkey can be 3-4 times as fast as SpiderMonkey[4].

Unfortunately, TraceMonkey does not speed up all JavaScript code. The
engine may have to abort tracing e.g. if it encounters code that is too branchy
(which could lead to an explosion in the number of trace trees). In such
cases, it falls back into the original SpiderMonkey interpreter. Consequently,
Mozilla began work on JaegerMonkey, a new method JIT for SpiderMonkey

1See https://bugzilla.mozilla.org/show bug.cgi?id=580468

1



in order to get reliable baseline performance similar to other engines[4] such
as Google’s V8 and Webkit’s JavaScriptCore.

2 Some AI Principles at Work

In order to track the performance of these engines, the Mozilla developers set
up a site with graphs comparing performance on the SunSpider[5] and Google
V8 benchmarks[6]. The engines are compared to Apple’s Nitro engine and
Google’s V8 engine. Mozilla’s next step forward is now integrating the trac-
ing engine and the method JIT since these are complementary compilation
techniques.

As of this writing, the combined JaegerMonkey/TraceMonkey engine is
about 660ms faster than JaegerMonkey alone on the V8 benchmark. How-
ever, running the two engines together on the Sunspider benchmark results
in a 10ms slowdown in comparison to running JaegerMonkey alone. It is
therefore important to determine when code should run in just one engine,
and if so, which one, or in both engines.

In the bug report related to this tuning[8], David Anderson, one of the
engine developers, manually instrumented the benchmarks with comments
denoting loop bodies and then used a Python script to preprocess them to
time individual loops. The script then outputs a chart describing how long
each loop took, and which engine mode (combination) was the best for that
loop. The initial data is attached to the bug report[9]. Below is a sampling
of loop running times for four of the sunspider tests.

sunspider/bitops-3bit-bits-in-byte.js

line mjit tjit m+tjit best
28 4 1 0 m+tjit
30 4 1 0 m+tjit

sunspider/bitops-bits-in-byte.js

line mjit tjit m+tjit best
8 18 14 19 tjit
19 32 28 28 tjit
21 32 28 28 tjit

sunspider/bitops-nsieve-bits.js

2



line mjit tjit m+tjit best
8 0 0 0 mjit
17 1 1 1 mjit
21 9 12 12 mjit
24 4 9 7 mjit
34 10 13 13 mjit

2.1 Breakdown of Analysis Procedures

The following analysis was performed by the engine developers2. Since Trace-
Monkey performance is affected by the percentage of ”hot” paths in the code,
a natural question that arises is how this data correlates to the branchiness
of the loops. Initially, Anderson was (and probably still is) doing such cor-
relation manually. In order to provide even more useful information for this
engine analysis, Anderson created a new script with the ability to selec-
tively enable tracing on any combination of loops on a script. The script
then performed a tree search on the various possible engine configurations
to find a supposedly optimal benchmark result (the search suggested an op-
timal benchmark time of 326ms compared to the current time of 358ms in
the current engine configuration. The initial searches performed were mostly
exhaustive. For the benchmarks on which the exhaustive technique did not
work, results were obtained using a random search.

The results collected from this portion of the analysis seemed to suggest to
Anderson that there were certain benchmarks that were definitely not worth
tracing at all. Some features these had in common were (statically detectable)
high nesting levels and calls to the eval function. Weaker indicators were
large number of if s, calls, and returns.

The focus of these searches had been finding which loops to avoid tracing.
Savings of up to 32ms were found on one of the benchmarks. Next, these
searches were run to find the most helpful benchmarks to trace. Speedups of
up to 6ms were found. This seemed to suggest that it was more important to
avoid tracing bad loops than to try tracing better loops (where better means
a lot of arithmetic, short loop bodies, and few if statements).

Based on these findings, Mandelin suggested the following heuristic to
determine whether loops should be traced:

1. Do not trace loops containing:

(a) a return out of the loop

(b) a call to eval

2Most of this section is a selective transcription of the actual conversation held by the
Mozilla developers in their ticketing system.

3



(c) more than 2 nested loops (not including the outer loop;
at any level)

2. If a loop contains these, probably do not trace it:

(a) more than 5 conditionals

(b) maybe-recursive calls (calls to the same name/prop name)

3. If a loop contains these, question tracing it:

(a) more than 4 function calls; methods seem to hurt tracing
more than global function calls

4. If a loop has these characteristics, do trace it:

(a) short loop body (where ’short’ needs to be precisely de-
fined)

(b) mostly arithmetic (where this needs to be precisely de-
fined - it’s mostly about the proportion of arithmetic
operations to other kinds)

Further examination of the data raised questions such as whether trace
compile time is linear in loop length (which is an issue for benchmarks with
over 1000 lines of code, for example). This would determine whether the
heuristic would need to account for loop length. It’s at this point that Man-
delin raises the possibility of (at some point) converting the heuristics into
’features’ that can then be plugged into a machine learning algorithm to
compute the best formula based on a training set.

Anderson also tried a different profiling technique using runtime rdtsc
profiling. From a practical point of view, he points out that it’s important
to find deterministic heuristics first, since timing-dependent results could
severely complicate debugging. Other decisions that these engine developers
are taking into account include:

1. Whether tracing decisions are best made on a loop-by-loop basis, or on
a file-by-file basis.

2. Whethere there is a relationship between loops in a script (does tracing
just one and leaving the other harm overall performance)?

3. Are the current benchmarks being used in this training very similar to
each other (and thus less representative of real world scripts)?

4. Do the ’dont care’ loops (those for which either/both engine is/are fine
affect the results, and if so, how?

4



5. Are there better heuristics for this task? McCloskey suggested the
following heuristic:

Do not trace if and only if any of these conditions hold, oth-
erwise trace:

(a) there are short loops of the form —for (...; x LT c; ...)—,
where —c— is a constant LTE 8?

(b) there are triply nested loops

(c) eval is called within a loop

2.2 Conclusion

Presented in this paper was an analysis of a real life example of Artificial
Intelligence concepts such as searching and heuristics at play in the tuning
of the performance of a JavaScript engine. This may well be the first such
application of machine learning related techniques as well in the integration
of more than one compiler for the same code, each with it’s own resultant
code performance characteristics.

3 References

1. What is SpiderMonkey?

http://www.mozilla.org/js/spidermonkey/

2. SpiderMonkey (JavaScript engine)

http://en.wikipedia.org/wiki/SpiderMonkey

3. http://www.ics.uci.edu/ franz/Site/pubs-pdf/ICS-TR-07-12.pdf

4. An Overview of TraceMonkey

http://hacks.mozilla.org/2009/07/tracemonkey-overview/

5. JaegerMonkey

https://wiki.mozilla.org/JaegerMonkey

6. http://www.arewefastyet.com

7. SunSpider JavaScript Benchmark

http://www2.webkit.org/perf/sunspider-0.9/sunspider.html

5



8. V8 Benchmark Suite

http://v8.googlecode.com/svn/data/benchmarks/v5/run.html

9. JM: Tune Trace JIT Heuristics

https://bugzilla.mozilla.org/show bug.cgi?id=580468

10. https://bug580468.bugzilla.mozilla.org/attachment.cgi?id=461848

6


